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Abstract In this paper, we prove the existence theorems of two types of systems of
variational inclusions problem. From these existence results, we establish Ekeland’s
variational principle on topological vector space, existence theorems of common fixed
point, existence theorems for the semi-infinite problems, mathematical programs with
fixed points and equilibrium constraints, and vector mathematical programs with var-
iational inclusions constraints.
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1 Introduction

In 1979, Robinson [24] studied the following parametric variational system:
Given x ∈ R

n, find y such that

0 ∈ g(x, y) + Q(x, y), (1)

where g : R
n × R

m → R
p is a single valued function and Q : R

n × R
m � R

p is a
multivalued map. It is known that model (1) covers variational inequalities problems
and a vast of variational system important in applications. Since then various types of
variational inclusions problems have been extended and generalized by Huang [10],
etc.

Mordukhovich [23] studied the following problem:

min ϕ(x, y), subject to y ∈ S(x), x ∈ �, (2)
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where g and Q are defined as in (1), S: X � Y is given by

S(x) = {y ∈ Y : 0 ∈ g(x, y) + Q(x, y)}
and X ⊆ R

n, Y ⊆ R
m, and ϕ : X × Y → R

s is a function. He studied the optimal
conditions of this type of problem.

Let X ⊆ R
n, Y ⊆ R

m, let f : X → R, g: X → R, and h: X × Y → R be functions,
H: X � Y be a multivalued map. The semi-infinite problem is the problem:
min f (x) s.t. g(x) ≥ 0, and h(x, v) ≥ 0 for all v ∈ H(x).

The semi-infinite problem represents an important class of optimization problem
which has been invistigated in a number of papers and books (see, e.g. [2,12,15,18,
19,22]) and references therein. As usual, these papers mainly dealed with optimal
conditions and develop numerical methods to solve these problems. Typically the
existence of feasible solution is tacitly assumed in their work. Therefore it is impor-
tant to establish the existence theorem of feasible solutions to semi-infinite problems.
Recently, Lin et al. [15,18,19] and Lin [12,16] investigated the sufficient conditions
for the existence of solution of this type of problem. In some optimization problems
the feasible points are the solutions of certain equilibrium problems and fixed points
of certain multivalued maps. The recently appeared paper Lin [16] is the first one to
study this type of problem.

The celebrated Ekeland’s variational principle [4,5] is an important tool in nonlin-
ear analysis. Generalizations and variants were developed, see [7,13] and references
there in. Recently Hamel [8] studied the Ekeland’s variational principle on sequen-
tially complete locally convex topological vector space (in short t.v.s.), Isac [11] studied
vector Ekeland’s type variational principle for functions defined on sequentially com-
plete locally convec t.v.s. with values in a Banach space, Wong [26] studied the Eke-
land’s principle on bornological vector space. Lin and Du [20], Ekeland’s variational
principle on t.v.s. was established by using an existence theorem of an equilibrium
problem.

Let I be an index set. For each i ∈ I, let Zi be a real t.v.s., Xi and Yi be non-
empty closed convex subsets of locally convex space Ei and Vi, respectively. Let
X = ∏

i∈I Xi and Y = ∏
i∈I Yi. For each i ∈ I, let Bi : X × Y � Xi, Si : X � Yi,

and Li : X × Y × Yi � Zi be multivalued maps. Recently, Lin [16] had studied the
following type of systems of variational inclusions problems:

(SVIP) Find x̄ = (x̄i)i∈I ∈ X, ȳ = (ȳi)i∈I ∈ Y such that for each i ∈ I, x̄i ∈ Bi(x̄, ȳ),
ȳi ∈ Si(x̄), and 0 ∈ Li(x̄, ȳ, vi) for all vi ∈ Si(x̄) (i.e., 0 ∈ ⋂

vi∈Si(x̄) Li(x̄, ȳ, vi))

and established the existence theorem of this problem. Use this result, he established
the existence theorems of solutions of systems of generalized equations, systems
of generalized vector quasi-equilibrium problems, collective variational fixed point,
mathematical program with systems of variational inclusions constraints, mathemati-
cal program with systems of equilibrium constraints and systems of bilevel problem,
and semi-infinite problem with systems of equilibrium constraints.

One easily sees that the above problems also have many connections with the
following problems.

Before we state those problems, we introduce notations that will be used through-
out this paper unless otherwise specified. For each i ∈ I, let Yi be a nonempty closed
convex subset of a t.v.s. Vi, Ui and Zi be real t.v.s. Let X be a nonempty subset of a
t.v.s. E, u ∈ X and Y = �i∈IYi. For each i ∈ I, let Fi: Y � Ui, Gi: Y × Yi � Zi and
Ti: Y � Yi be multivalued maps.



J Glob Optim (2007) 39:509–527 511

In this paper, we study the following type of systems of variational inclusions
problems:

(SVIP) Find ȳ ∈ Y such that 0 ∈ Fi(ȳ), 0 ∈ Gi(ȳ, vi) for all vi ∈ Ti(ȳ) and for all
i ∈ I.

From (SVIP) we study the following problems:

(1) Find ȳ ∈ Y such that 0 ∈ Fi(ȳ) + Pi(ȳ), 0 ∈ Qi(ȳ) + Gi(ȳ, vi) for all vi ∈ Ti(ȳ)

and for all i ∈ I, where Pi, Fi: Y � Ui, Qi: Y � Zi, and Gi: Y × Yi � Zi be
multivalued maps.

(2) Find ȳ ∈ Y such that ȳ ∈ Fi(ȳ), ȳ ∈ Gi(ȳ, vi) for all vi ∈ Ti(ȳ) and for all i ∈ I.
(3) Find ȳ ∈ Y such that Fi(ȳ) ≤ 0, Gi(ȳ, vi) ≥ 0 for all vi ∈ Ti(ȳ) and for all i ∈ I,

where Fi: Y → R and Gi: Y × Yi → R are functions.
The following Ekeland’s variational principle on t.v.s. is a particular form of (3);

(4) Find x̄ ∈ X such that
(a) εp(u, x̄) ≤ f (u) − f (x̄) and
(b) εp(x̄, v) ≥ f (x̄) − f (v) for all v ∈ T(x̄),
where, f : X → (−∞, ∞], and p: X × X → (−∞, ∞] are functions, u ∈ X, ε > 0
and T: X � X is a multivalued map.
A particular form of (4) is the problem

(5) Find x̄ ∈ X such that
(a) εp(u, x̄) ≤ f (u) − f (x̄)

(b) εp(x̄, v) ≥ f (x̄) − f (v) for all v ∈ X.
Let Z0 be a real t.v.s. ordered by a closed convex cone D in Z0 and f : Y � Z0.
As applications of our results, we study the existence theorems of mathemati-
cal programs with variational inclusions constraints (MPVI), semi-infinite prob-
lems(SI1 and SI2), and mathematical programs with fixed points and equilibrium
constraints (PFIEP):

(MPVI) MinDf (y), subject to y ∈ Y such that for each i ∈ I, 0 ∈ Fi(y), and
0 ∈ Gi(ȳ, vi) for all vi ∈ Ti(y).

(SI1) MinDf (y), subject to y ∈ Y such that for each i ∈ I, Gi(y, vi) ≥ 0 for all
vi ∈ Ti(y).

(SI2) MinDf (y), subject to y ∈ Y such that for each i ∈ I, Fi(y) ≤ 0, and
Gi(y, vi) ≥ 0 for all vi ∈ Ti(y).

(MPFTEP) MinDf (y), subject to y ∈ Y such that for each i ∈ I, y ∈ Fi(y), and
Gi(y, vi) ≥ 0 for all vi ∈ Ti(y).

In this paper, we first establish the existence theorems of systems of generalized
quasi-variational inclusions problem, from which we prove the existence of common
fixed point theorems for two families of multiavlued maps, Ekeland’s variational
principle, existence theorems of mathematical programs with variational inclusions
constraints, and semi-infinite problems. In this paper, we study Ekeland’s variational
principle in t.v.s. and our results on Ekeland’s variational principle include Lin et al.
[20] as special case. Our Ekeland’s variational principle on t.v.s. can not be reduced
from Theorem 4.2 [26], Theorem 7 [11], and Theorem 2 [8] and vice versa. Our results
on mathematical program with variational inclusions constraints, mathematical pro-
grams with fixed points and equilibrium constraints and semi-infinite problems are
different from Theorems 6.1–6.4 in ref. [10], Corollaries 5.1 and 5.4 in ref. [18], Remark
in ref. [12], Theorem 7 in ref. [15], Remark 5.1 in ref. [16].



512 J Glob Optim (2007) 39:509–527

2 Preliminaries

Let V and W be nonempty sets, a multivalued map T: V � W be a function from V
into the power set of W. Let T: V � W, x ∈ V, y ∈ W, we define x ∈ T−(y) if and only
if y ∈ T(x). Let V and W be topological spaces (in short t.s.), and let T: V � W be a
multivalued map. T is said to be upper semi-continuous (in short u.s.c.) (respectively,
lower semi-continuous (in short l.s.c.) at x ∈ V, if for every open set U in W with
T(x) ⊆ U (respectively, T(x) ∩ U �= ∅) there exists an open neighborhood V(x) of x
such that T(x′) ⊆ U (respectively, T(x′) ∩ U �= ∅) for all x′ ∈ V(x); T is said to be
u.s.c. (respectively, l.s.c.) on V if T is u.s.c. (respectively, l.s.c.) at every point of V; T is
continuous at x if T is both u.s.c. and l.s.c. at x; T is compact if there exists a compact
set K ⊆ W such that T(V) ⊆ K; T is closed if GrT = {(x, y) ∈ V×W : y ∈ T(x), x ∈ V}
is a closed set in V × W. Let A be a nonempty subset of a vector space E, coA will
denote the convex hull of A.

Let Z be a real t.v.s., D a proper closed convex cone in Z. A point ȳ ∈ A is called a
vector minimal point of A if for any y ∈ A, y− ȳ /∈ −D\ {0}. The set of vector minimal
points of A is denoted by MinDA.

The following lemmas and theorems are needed in this paper.

Lemma 2.1 [25] Let X and Y be topological spaces, T : X � Y be a multivalued
map. Then T is l.s.c. at x ∈ X if and only if for any y ∈ T(x) and any net {xα}α∈� in X
converges to x, there exists a net {yα}α∈�, yα ∈ T(xα) for all α ∈ A with yα → y, where
� is an index set.

Lemma 2.2 [21] Let Z be a Hausdorff t.v.s., C be a closed convex cone in Z. If A is a
nonempty compact subset of Z, then MinCA �= ∅.

Theorem 2.1 [1] Let X and Y be Hausdorff topological spaces, T : X � Y be a
multivalued map.

(1) If T is an u.s.c. multivalued map with closed values, then T is closed.
(2) If Y is a compact space and T is closed, then T is u.s.c.
(3) If X is compact and T is an u.s.c. multivalued map with compact values, then T(X)

is compact.

Definition 2.1 Let X be a nonempty convex subset of a vector space E, Y be a non-
empty convex subset of a vector space H and Z be a real t.v.s.. Let F : Y � Z and
C: X � Z be multivalued maps such that for each x ∈ X, C(x) is a closed convex
cone.

(1) F is C(x)− quasi-convex if for any y1, y2 ∈ Y and λ ∈ [0, 1], either

F(y1) ⊆ F(λy1 + (1 − λ)y2) + C(x)

or

F(y2) ⊆ F(λy1 + (1 − λ)y2) + C(x).

(2) F is {0}− quasi-convex-like if for any y1, y2 ∈ Y and λ ∈ [0, 1], either

F(λy1 + (1 − λ)y2) ⊆ F(y1)

or

F(λy1 + (1 − λ)y2) ⊆ F(y2).
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(3) F is affine if for any y1, y2 ∈ Y and λ ∈ [0, 1],
F(λy1 + (1 − λ)y2) = λF(y1) + (1 − λ)F(y2).

(4) F is concave if for any y1, y2 ∈ Y and λ ∈ [0, 1], we have

λF(y1) + (1 − λ)F(y2) ⊆ F(λy1 + (1 − λ)y2).

Remark 2.1

(a) If F: Y � Z is a multivalued map, that F is C(x)-quasi-convex does not guarantee
that F is C(x)-quasi-convex-like.

(b) If F : Y → Z is a function, then F is C(x)-quasi-convex if and only if F is
C(x)-quasi-convex-like.

Theorem 2.2 (Himmelberg [9]) Let X be a convex subset of a locally convex t.v.s. and
D be a nonempty compact subset of X. Suppose T : X � D be an u.s.c. multivalued
map such that for each x ∈ X, T(x) is a nonempty closed convex subset of D. Then
there exists a point x̄ ∈ X such that x̄ ∈ T(x̄).

The following lemma is a special case of Theorem 7 in ref. [3] or Theorem 4.4 in
ref. [14].

Lemma 2.3 [3,14] Let {Xi}i∈I be a family of nonempty convex subset, where each Xi
is contained in a t.v.s. Ei. For each i ∈ I, let Ri, Si: X = �i∈IXi � Xi be a multivalued
map such that

(1) for each x ∈ S, coSi(x) ⊂ Ri(x);
(2) for each x = (xi)i∈I ∈ X, xi /∈ Ri(x);
(3) for each yi ∈ Xi, S−

i (yi) is open in Xi;
(4) there exist a nonempty compact subset K of X and a nonempty compact convex

subset Mi of Xi for all i ∈ I such that for each x ∈ X\K, there exists j ∈ I such that
Mj ∩ Sj(x) �= ∅.

Then there exists x̄ ∈ X such that Si(x̄) = ∅ for all i ∈ I.
Throughout this paper, all topological spaces are assumed to be Hausdorff.

3 Existence theorems of variational inclusions problems

The following existence theorem is one of the main results of this paper.

Theorem 3.1 For each i ∈ I, let Qi : Y × Yi � Zi, Bi, Ai : Y � Yi be defined by
Ai(y) = {vi ∈ Yi : 0 /∈ Gi(y, vi)} and Bi(y) = {vi ∈ Yi : 0 /∈ Qi(y, vi)}. For each i ∈ I,
suppose that

(1) Ti(Y) ⊆ Hi, Wi is a closed subset of Y and Yi is a closed convex subset of Vi,
where Hi = {yi ∈ Yi : 0 ∈ Fi(y) for y = (yi)i∈I ∈ Y} and Wi = {y ∈ Y : 0 ∈ Fi(y)};

(2) for each vi ∈ Yi, T−
i (vi) is open;

(3) for each y = (yi)i∈I ∈ Y, Ti(y), and Bi(y) are convex, for each vi ∈ Yi, A−
i (vi) is

open and 0 ∈ Qi(y, yi);
(4) for each (y, vi) ∈ Y × Yi, 0 /∈ Gi(y, vi) implies 0 /∈ Qi(y, vi);
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(5) there exist a nonempty compact subset K of Y and a nonempty compact convex
subset Mi of Yi for each i ∈ I such that for each y ∈ Y\K, there exists j ∈ I, and
vj ∈ Mj ∩ Tj(y) such that 0 /∈ Gj(y, vj).

Then there exists ȳ ∈ Y such that 0 ∈ Fi(ȳ) and 0 ∈ Gi(ȳ, vi) for all vi ∈ Ti(ȳ) and
for all i ∈ I.

Proof For each i ∈ I, let Si, Ri: Y � Yi be defined by

Si(y) =
{

Ti(y) ∩ Ai(y), if y ∈ Wi,
Ti(y), if y ∈ Y\Wi

and

Ri(y) =
{

Ti(y) ∩ Bi(y), if y ∈ Wi,
Ti(y), if y ∈ Y\Wi.

By (3) and our assumptions, Ti(y), Bi(y), and Ri(y) are convex sets for each y ∈ Y.
For each y = (yi)i∈I ∈ Y, yi /∈ Ri(y). Indeed, if y ∈ Y\Wi, then 0 /∈ Fi(y) and yi /∈ Hi.
By(1), yi /∈ Ti(y). Hence yi /∈ Ri(y). By (3), 0 ∈ Qi(y, yi), then yi /∈ Bi(y). Therefore if
y ∈ Wi, then yi /∈ Ti(y) ∩ Bi(y) and yi /∈ Ri(y). It is easy to see that for each i ∈ I and
vi ∈ Yi,

S−
i (vi) = [T−

i (vi) ∩ A−
i (vi)] ∪ [(Y\Wi) ∩ T−

i (vi)].
By (1)–(3), S−

i (vi) is open for each i ∈ I and vi ∈ Yi. By (4), for each i ∈ I, and y ∈ Y,
Ai(y) ⊂ Bi(y). Hence coSi(y) ⊂ Ri(y). By (5), for each y ∈ Y\K, there exists j ∈ I
such that Mj ∩ Sj(y) �= ∅. Then, by Lemma 2.3, there exists ȳ ∈ Y such that Si(ȳ) = ∅
for all i ∈ I. If ȳ ∈ Y\Wi, then Si(ȳ) = Ti(ȳ) = ∅. This contradicts with Ti(y) �= ∅ for
all y ∈ Y. Therefore ȳ ∈ W and Si(ȳ) = Ti(ȳ) ∩ Ai(ȳ) = ∅. This shows that 0 ∈ Fi(ȳ)

and 0 ∈ Gi(ȳ, vi) for all vi ∈ Ti(ȳ) and for all i ∈ I. �

If we let Gi = Qi in Theorem 3.1, then we have the following corollary.

Corollary 3.1 Let I, Ai be the same as in Theorem 3.1. Assume that assumptions (1),
(2), and (5) of Theorem 3.1 and that condition (3) of Theorem 3.1 is replaced by

(3)′ for each y ∈ Y, Ti(y) and Ai(y) are convex, for each vi ∈ Yi, A−
i (vi) is open and

0 ∈ Gi(y, yi).

Then there exists ȳ ∈ Y such that 0 ∈ Fi(ȳ) and 0 ∈ Gi(ȳ, vi) for all vi ∈ Ti(ȳ) and for
all i ∈ I.

Remark 3.1

(a) In Theorem 3.1, if for each i ∈ I, Yi is compact, then condition (5) of Theorem
3.1 can be deleted.

(b) If Fi(y) = 0 for all y ∈ Y, then Wi = Y, and condition (1) of Theorem 3.1 is
satisfied.

Theorem 3.2 Theorem 3.1 is true if for each i ∈ I, Yi is a closed convex subset of Vi
and conditions (1) and (3) of Theorem 3.1 are replaced by (1)a and (3)a, respectively,
where

(1)a Ti(Y) ⊆ Hi and y � Fi(y) is closed; and
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(3)a for each vi ∈ Yi, y � Qi(y, vi) is {0}-quasi-convex-like, Ti(y) is convex, y �
Gi(y, vi) is closed multivalued map and for each y = (yi)i∈I ∈ Y, 0 ∈ Qi(y, yi).

Proof Take Wi be the same as in Theorem 3.1. By (1)a, Wi is a closed subset of Y.
Indeed, if y ∈ Wi, then there exists a net {yα}α∈� in Wi such that yα → y. One
has yα ∈ Y and 0 ∈ Fi(yα). By (1)a, 0 ∈ Fi(y). Since Y is a closed set, y ∈ Y.
Hence y ∈ Wi and Wi is a closed set. For each y ∈ Y, Bi(y) is convex. Indeed, if
v1

i , v2
i ∈ Bi(y) and λ ∈ [0, 1], then v1

i , v2
i ∈ Yi, 0 /∈ Qi(y, v1

i ) and 0 /∈ Qi(y, v2
i ). We

want to show that 0 /∈ Qi(y, λv1
i + (1 − λ)v2

i ) for all λ ∈ [0, 1]. Suppose to the con-
trary that there exists λ0 ∈ [0, 1] such that 0 ∈ Qi(y, λ0v1

i + (1 − λ0)v2
i ). By (3)a, either

0 ∈ Qi(y, λ0v1
i +(1−λ0)v2

i ) ⊆ Qi(y, v1
i ) or 0 ∈ Qi(y, λ0v1

i +(1−λ0)v2
i ) ⊆ Qi(y, v2

i ). This
leads to a contradiction. Therefore, 0 /∈ Qi(y, λv1

i +(1−λ)v2
i ) for all λ ∈ [0, 1]. Since Yi

is convex, λv1
i +(1−λ)v2

i ∈ Yi. Hence λv1
i +(1−λ)v2

i ∈ Bi(y) for all λ ∈ [0, 1] and Bi(y)

is convex for each y ∈ Y. For each vi ∈ Yi, A−
i (vi) is open. Indeed, if y ∈ Y\A−

i (vi),
then there exists a net {yα}α∈� in Y\A−

i (vi) such that yα → y. One has yα ∈ Y and
0 ∈ Gi(yα , vi). We see y ∈ Y. By (3)a, 0 ∈ Gi(y, vi). Therefore y ∈ Y\A−

i (vi) and
Y\A−

i (vi) is closed for each i ∈ I. This shows that A−
i (vi) is open for each vi ∈ Yi.

Then Theorem 3.2 follows from Theorem 3.1. �
The following theorem is equivalent to Theorem 3.1.

Theorem 3.3 For each i ∈ I, let Pi: Y � Ui, Li: Y � Zi be multivalued maps with
nonempty values, Ai, Ti : Y � Yi, and Qi : Y × Yi � Zi be multivalued maps with
nonempty convex values. For each i ∈ I, suppose that

(1) Ti(Y) ⊆ Hi and Wi is a closed subset of Y, where Hi = {yi ∈ Yi : 0 ∈ Pi(y)+Fi(y)

for y = (yi)i∈I ∈ Y}
and
Wi = {y ∈ Y : 0 ∈ Pi(y) + Fi(y)};

(2) for each vi ∈ Yi, T−
i (vi) is open;

(3) for each y = (yi)i∈I ∈ Y, Bi(y), and Ti(y) are convex, for each vi ∈ Yi, A−
i (vi) is

open and 0 ∈ Qi(y, yi), where
Ai(y) = {vi ∈ Yi : 0 /∈ Li(y) + Gi(y, vi)}
and
Bi(y) = {vi ∈ Yi : 0 /∈ Qi(y, vi)};

(4) for each (y, vi) ∈ Y × Yi, 0 /∈ Li(y) + Gi(y, vi) implies 0 /∈ Qi(y, vi);
(5) there exist a nonempty compact subset K of Y and a nonempty compact convex

subset Mi of Yi for each i ∈ I such that for each y ∈ Y\K, there exists j ∈ I, and
vj ∈ Mj ∩ Tj(y) such that 0 /∈ Lj(y) + Gj(y, vj).

Then there exists ȳ ∈ Y such that 0 ∈ Fi(ȳ) + Pi(ȳ) and 0 ∈ Li(ȳ) + Gi(ȳ, vi) for all
vi ∈ Ti(ȳ) and for all i ∈ I.

Theorem 3.4 Theorem 3.3 is true if yi is closed and conditions (1), (3) of Theorem 3.3
are replaced by (1)b and (3)b, respectively, where

(1)b Ti(Y) ⊆ Hi, y � Pi(y) is a closed multivalued map and y � Fi(y) is an u.s.c.
multivalued map with nonempty compact values;

(3)b for each fixed vi ∈ Yi, y � Qi(y, vi) is {0}-quasi-convex-like, for each y =
(yi)i∈I , 0 ∈ Qi(y, yi), and Ti(y) is convex; y � Li(y) is closed and y � Gi(y, vi)

is an u.s.c. multivalued map with nonempty compact values.
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Proof y � Pi(y) + Fi(y) is closed. Indeed, if (y, wi) ∈ Gr(Pi + Fi), then there exists
a net (yα , wα

i )α∈� ∈ Gr(Pi + Fi) such that (yα , wα
i ) → (y, wi). We have wα

i ∈ Pi(yα) +
Fi(yα) for all α ∈ �. There exist bα

i ∈ Pi(yα), dα
i ∈ Fi(yα) such that wα

i = bα
i + dα

i . Let
B = {yα : α ∈ �} ∪ {y}. Then B is compact. By (1)b and Theorem 2.1 that Fi(B) =
∪v∈BFi(v) is compact. Therefore, {dα

i }α∈� has a subnet {dαλ
i }αλ∈� such that dαλ

i → di.
Since y � Fi(y) is an u.s.c. multivalued map with closed valued, it follows from The-
orem 2.1 that y � Fi(y) is closed. Therefore, di ∈ Fi(y). bαλ

i = wαλ
i − dαλ

i → wi − di.
By assumption (1)b, wi −di ∈ Pi(y). Hence wi ∈ Pi(y)+di ⊆ Fi(y)+Pi(y). This shows
that (y, wi) ∈ Gr(Pi + Fi) and Pi + Fi is closed. Therefore, y � Pi(y)+ Fi(y) is closed.
Similarly, we can show that y � Li(y)+ Gi(y, vi) is closed. Then Theorem 3.4 follows
from Theorem 3.2. �
Theorem 3.5 Let Yi be a nonempty convex subset of a locally convex space Vi. For
each i ∈ I, suppose that

(1) Ti : Y � Yi is a compact continuous multivalued map with nonempty closed
convex values;

(2) (y, vi) � Gi(y, vi) is a closed multivalued map;
(3) for each y ∈ Y, vi � Gi(y, vi) is {0}-quasi-convex-like and 0 ∈ Gi(y, yi) for all

y = (yi)i∈I ∈ Y and for each vi ∈ Yi, y � Gi(y, vi) is concave or {0}-quasi-convex;
(4) y � Fi(y) is concave or {0}-quasi-convex and

{yi ∈ Yi : 0 ∈ Fi(y) for y = (yi)i∈I ∈ Y} �= ∅.

Then there exists ȳ = (ȳi)i∈I such that ȳi ∈ Ti(ȳ), 0 ∈ Fi(ȳ), and 0 ∈ Gi(ȳ, vi) for all
vi ∈ Ti(ȳ) and for all i ∈ I.

Proof For each i ∈ I, let
Ki = {yi ∈ Yi : 0 ∈ Fi(y) for y = (yi)i∈I ∈ Y}, and K = ∏

i∈I Ki.
Then Ki is convex. Indeed, if y1

i , y2
i ∈ Ki and λ ∈ [0, 1]. Let y1 = (y1

i )i∈I and
y2 = (y1

i )i∈I , then y1
i , y2

i ∈ Yi, y2 ∈ Y, 0 ∈ Fi(y1), and 0 ∈ Fi(y2). Since Yi is convex,
λy1

i + (1 − λ)y2
i ∈ Yi. By (4), it is easy to shows that Ki is a nonempty convex set. For

each i ∈ I, let Hi: K � Ti(Y) be defined by

Hi(y) = {si ∈ Ti(y) : 0 ∈ Gi(s, vi) for s = (si)i∈I and for all vi ∈ Ti(y)}.
Follow the same arguments as in Theorem 3.1 in ref. [16], we can show that Hi: K �
Ti(Y) is a compact u.s.c. multivalued map with nonempty closed convex values. Let
Q : K �

∏
i∈I Ti(Y) be defined by Q(y) = ∏

i∈I Hi(y) for y ∈ K. Then it follows
from Lemma 3 [6] that Q: K �

∏
i∈I Ti(Y) is a compact u.s.c. multivalued map with

nonempty closed convex values. Then, by Himmelberg fixed point theorem, there
exists ȳ = (ȳi)i∈I ∈ K such that ȳ ∈ Qi(ȳ). Then for all i ∈ I, ȳi ∈ Ti(ȳ), ȳi ∈ Ki, and
0 ∈ Gi(ȳ, vi) for all vi ∈ Ti(ȳ). Since ȳi ∈ Ki, 0 ∈ Fi(ȳ). �
Remark 3.2 (a) Theorem 3.5 can not be reduced from Theorem 3.1 [16].

Apply Theorem 3.5 and follow the same argument as in Theorem 3.3, we have the
following theorem.

Theorem 3.6 For each i ∈ I, let Yi be a nonempty convex subset of a locally convex
space Vi. For each i ∈ I, suppose that

(1) Ti : Y � Yi is a compact continuous multivalued map with nonempty closed
convex values;
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(2) Pi: Y � Ui is a multivalued map with nonempty values and the set
Ji = {yi ∈ Yi : 0 ∈ Pi(y) + Fi(y) for y = (yi)i∈I ∈ Y}
is a nonempty convex set;

(3) Li: Y � Zi is a multivalued map with nonempty values such that for each y ∈ Y,
vi � Li(y) + Gi(y, vi) is {0}-quasi-convex-like and for each y ∈ Y, the set
Hi(y) = {si ∈ Ti(y) : 0 ∈ Li(s) + Gi(s, vi) for s = (si)i∈I and for all vi ∈ Ti(y)}
is convex and 0 ∈ Li(y) + Gi(y, yi) for all y = (yi)i∈I ∈ Y;

(4) (y, vi) � Li(y) + Gi(y, vi) is closed.

Then there exists ȳ = (ȳi)i∈I ∈ Y such that ȳi ∈ Ti(ȳ), 0 ∈ Pi(ȳ) + Fi(ȳ), 0 ∈
Li(ȳ) + Gi(ȳ, vi) for all vi ∈ Ti(ȳ) and for all i ∈ I.

4 Applications to Ekeland’s variational principle and common fixed point theorems

As consequences of Theorems 3.1 and 3.6, we can establish Ekeland’s variational
principle in t.v.s. and common fixed point theorems.

Theorem 4.1 For each i ∈ I, let Yi be closed, Fi : Y → R, Qi, Gi : Y × Yi → R be
functions and Hi = {yi ∈ Yi : Fi(y) ≤ 0 for y = (yi)i∈I ∈ Y}.

For each i ∈ I, suppose that

(1) Ti(Y) ⊆ Hi and y → Fi(y) is a l.s.c. function;
(2) for each vi ∈ Yi, T−

i (vi) is open;
(3) for each y = (yi)i∈I ∈ Y, Ti(y) is convex, Qi(y, yi) ≥ 0, and vi → Qi(y, vi) is a

quasi-convex function and for each vi ∈ Yi, y → Gi(y, vi) is an u.s.c. function;
(4) for each (y, vi) ∈ Y × Yi, Gi(y, vi) < 0 implies Qi(y, vi) < 0;
(5) there exist a nonempty compact subset K of Y and a nonempty compact convex

subset Mi of Yi for each i ∈ I such that for each y ∈ Y\K, there exist j ∈ I and
vj ∈ Mj ∩ Tj(y) such that Gj(y, vj) < 0.

Then there exists ȳ ∈ Y such that Fi(ȳ) ≤ 0, Gi(ȳ, vi) ≥ 0 for all vi ∈ Ti(ȳ) and for all
i ∈ I.

Proof For each i ∈ I, let Ai, Bi: Y � Yi be defined by

Ai(y) = {vi ∈ Yi : 0 /∈ −R+ + Gi(y, vi)} and

Bi(y) = {vi ∈ Yi : 0 /∈ −R+ + Gi(y, vi)}.
It is easy to see that Hi = {yi ∈ Yi : 0 ∈ R+ + Fi(y) for y = (yi)i∈I ∈ Y}. Let
Wi = {y ∈ Y : Fi(y) ≤ 0}. Then Wi = {y ∈ Y : 0 ∈ R+ + Fi(y)}. By (1), Wi
is a closed subset of Y. Since y → Gi(y, vi) is an u.s.c. function for each vi ∈ Yi,
Y\A−

i (vi) = {y ∈ Y : 0 ∈ −R+ + Gi(y, vi)} = {y ∈ Y : Gi(y, vi) ≥ 0} is closed.
Therefore, A−

i (vi) is open for each vi ∈ Yi. By (3), vi → Qi(y, vi) is quasi-convex, then

Bi(y) = {vi ∈ Yi : 0 /∈ −R+ + Qi(y, vi)}
= {vi ∈ Yi : Qi(y, vi) < 0} is convex .

By (5), for each y ∈ Y\K, there exists j ∈ I such that vj ∈ Mj ∩ Tj(y) and
0 /∈ −R+ + Gj(y, vj).
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Then by Theorem 3.1, there exists ȳ ∈ Y such that for each i ∈ I, 0 ∈ R+ + Fi(ȳ)

and 0 ∈ −R+ + Gi(ȳ, vi) for all vi ∈ Ti(ȳ). That is, Fi(ȳ) ≤ 0 and Gi(ȳ, vi) ≥ 0 for all
vi ∈ Ti(ȳ). �

If we let Gi = Qi in Theorem 4.1, we have the following corollary.

Corollary 4.1 Let I, Fi, Gi, Hi and Yi be the same as in Theorem 4.1. For each i ∈ I,
suppose that

(1) Ti(Y) ⊂ Hi and y → Fi(y) is a l.s.c. function;
(2) for each y = (yi)i∈I ∈ Y, Ti(y) is convex, Gi(y, yi) ≥ 0 and vi → Gi(y, vi) is a

quasi-convex function and for each vi ∈ Yi, y → Gi(y, vi) is an u.s.c. function;
(3) for each vi ∈ Yi, T−

i (vi) is open;
(4) there exists a nonempty compact subset K of Y and a nonempty compact convex

subset Mi of Yi for each i ∈ I such that for each y ∈ Y\K, there exist j ∈ I and
vj ∈ Mj

⋂
Tj(y) such that Gj(y, vj) < 0.

Then there exists ȳ ∈ Y such that Fi(ȳ) ≤ 0, and Gi(ȳ, vi) ≥ 0 for all vi ∈ Ti(ȳ) and for
all i ∈ I.

Corollary 4.2 If we assume assumption (4) of Corollary 4.1, and that conditions (1)

and (2) of Corollary 4.1 are replaced by (1′) and (2′), respectively, where

(1′) y → Fi(y) is a l.s.c. convex function.
(2′) for each y = (yi)i∈I ∈ Y, Gi(y, yi) ≥ 0 and vi → Gi(y, vi) is a quasi-convex

function and for each vi ∈ Yi, y → Gi(y, vi) is an u.s.c. function.

Then there exists ȳ ∈ Y such that Fi(ȳ) ≤ 0 and Gi(ȳ, vi) ≥ 0 for all vi ∈ Hi.

Proof Let Ti(y) = Hi for all y ∈ Y. For each vi ∈ Yi,

T−
i (vi) =

{
Y, if vi ∈ Hi,
∅, if vi ∈ Yi\Hi.

Therefore T−
i (vi) is open and Ti(y) is convex for all y ∈ Y. �

Then Corollary 4.2 follows from Corollary 4.1.

Remark 4.1 If I is singleton, then Corollary 4.2 will be reduced to Theorem 3.3 [20].

Theorem 4.2 For each i ∈ I, let Yi be a nonempty convex subset of a locally convex
space Vi, Fi: Y → R and Gi: Y × Yi → R be functions. For each i ∈ I, suppose that

(1) Ti : Y � Yi is a compact continuous multivalued map with nonempty closed
convex values;

(2) y → Fi(y) is quasi-convex and {yi ∈ Yi : Fi(y) ≤ 0 for y = (yi)i∈I ∈ Y} is
nonempty;

(3) for each y ∈ Y, vi → Gi(y, vi) is quasi-convex; for each vi ∈ Yi, {s ∈ Y : Gi(s, vi) ≥
0} is convex and Gi(y, yi) ≥ 0 for all y = (yi)i∈I ∈ Y; and

(4) y → Gi(y, vi) is an u.s.c. function for each fixed vi ∈ Yi.

Then there exists ȳ = (ȳi)i∈I ∈ Y such that ȳi ∈ Ti(ȳ), Fi(ȳ) ≤ 0, Gi(ȳ, vi) ≥ 0 for all
vi ∈ Ti(ȳ) and for all i ∈ I.
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Proof Let Pi: Y � R and Li: Y � R be defined by Pi(y) = R+ and Li(y) = −R+ for
all y ∈ Y. By (2),

Ki = {yi ∈ Yi, 0 ∈ R+ + Fi(y) for y = (yi)i∈I ∈ Y}
= {yi ∈ Yi : Fi(y) ≤ 0 for (yi)i∈I ∈ Y}

is a nonempty convex set.
For each y ∈ Y, vi � −R+ + Gi(y, vi) is {0}-quasi-convex-like. Indeed, let v1

i , v2
i ∈

Yi, λ ∈ [0, 1], by (3), either
Gi(y, λv1

i + (1 − λ)v2
i ) ∈ Gi(y, v1

i ) − R+ or
Gi(y, λv1

i + (1 − λ)v2
i ) ∈ Gi(y, v2

i ) − R+.
Therefore, either

−R+ + Gi(y, λv1
i + (1 − λ)v2

i ) ⊆ Gi(y, v1
i ) − R+ − R+

⊆ Gi(y, v1
i ) − R+ or

−R+ + Gi(y, λv1
i + (1 − λ)v2

i ) ⊆ −R+ + Gi(y, v2
i ).

This shows that for each y ∈ Y, vi � −R
+ + Gi(y, vi) is {0}-quasi-convex like. By

(3), for each vi ∈ Yi, {s ∈ Y : Gi(s, vi) ≥ 0} is convex. Hence for each y ∈ Y,
{s ∈ Y : Gi(s, vi) ≥ 0 for all vi ∈ Ti(y)} = ∩vi∈Ti(y){s ∈ Y : Gi(y, vi) ≥ 0} is convex.
This shows that for each y ∈ Y,

Hi(y) = {si ∈ Ti(y) : 0 ∈ −R+ + Gi(s, vi) for s = (si)i∈I ∈ Y and for all vi ∈ Ti(y)}
= {si ∈ Ti(y) : Gi(s, vi) ≥ 0 for s = (si)i∈I ∈ Y and for all vi ∈ Ti(y)}
= Ti(y) ∩ {si ∈ Yi : Gi(s, vi) ≥ 0 for s = (si)i∈I ∈ Y and for all vi ∈ Ti(y)}

is convex. (y, vi) � −R+ + Gi(y, vi) is closed. Indeed, let Ji(y, vi) = −R+ + Gi(y, vi)

and (y, vi, a) ∈ GrJi, then there exists a net (yα , vα
i , aα) ∈ GrJi such that (yα , vα

i , aα) →
(y, vi, a). One has aα ∈ Ji(yα , vα

i ) = −R+ + Gi(yα , vα
i ). Therefore Gi(yα , vα

i ) ≥ aα . By
(4), Gi(y, vi) ≥ limα→∞Gi(yα , vα

i ) ≥ limα→∞ aα = a. Hence a ∈ −R+ + Gi(y, vi) =
Ji(y, vi) and (y, vi, a) ∈ GrJi. This shows that GrJi is a closed set and Ji is closed.
Therefore (y, vi) � −R+ + Gi(y, vi) is closed. Then by Theorem 3.6 that there exists
ȳ = (ȳi)i∈I ∈ Y such that ȳi ∈ Ti(ȳ), 0 ∈ R+ + Fi(ȳ) and 0 ∈ −R+ + Gi(ȳ, vi) for all
vi ∈ Ti(ȳ) and for all i ∈ I. That is Fi(ȳ) ≤ 0 and Gi(ȳ, vi) ≥ 0 for all vi ∈ Ti(ȳ). �

As consequence of Theorems 4.1 and 4.2, we establish the following existence
theorems of Ekeland’s variational principle on t.v.s.

Theorem 4.3 Let X be a nonempty closed convex subset of a t.v.s. E, f: X → (−∞, ∞)

be a l.s.c. function, u ∈ X and ε > 0. Let T : X � X be a multivalued map with
nonempty convex values, and p, q: X × X → (−∞, ∞) be a function. Suppose that

(1) T(X) ⊆ {y ∈ X : εp(u, y) ≤ f (u) − f (y)} and T−(v) is open for each v ∈ X;
(2) for each x ∈ X, q(x, x) ≥ 0 and v → q(x, v) is quasi-convex;
(3) for any x ∈ X, v → p(x, v) is l.s.c.;
(4) for each (x, v) ∈ X × X, εp(x, v) − f (x) + f (v) < 0 implies q(x, v) < 0;
(5) for any v ∈ X, x → p(x, v) is u.s.c.; and
(6) there exist a nonempty compact subset K of X and a nonempty compact convex

subset M of X such that for each y ∈ X\K, there exists z ∈ M ∩ T(y) such that

εp(y, z) < f (y) − f (z).
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Then there exists x̄ ∈ X such that

(1) εp(u, x̄) ≤ f (u) − f (x̄);
(2) εp(x̄, v) ≥ f (x̄) − f (v) for all v ∈ T(x̄).

Proof Let F(x) = εp(u, x) − f (u) + f (x) and G(x, v) = εp(x, v) − f (x) + f (v).
Since v → p(u, v) and v → f (v) are l.s.c., v → F(v) is l.s.c.
By (5), for each v ∈ X, x → εp(x, v) − f (x) + f (v) = G(x, v) is u.s.c.
By (6), for each y ∈ X\K, there exists z ∈ M ∩ T(y) such that G(y, z) < 0. Then

by Theorem 4.1, there exists x̄ ∈ X such that εp(u, x̄) ≤ f (u) − f (x̄) and εp(x̄, v) ≥
f (x̄) − f (v) for all v ∈ T(x̄). �

Remark 4.2

(a) If E is a normed linear space, S : X → X is convex continuous function and
p: X × X → R is defined by p(x, y) = max{‖Sx − y‖, ‖Sx − Sy‖}. Then p satisfies
conditions (2), (3), and (5) of Theorem 4.3, but p is not a metric.

(b) Under the assumptions (3) of Theorem 4.3 and f : X → (−∞, ∞) is convex, if
T(y) = {x ∈ X : εp(u, x) ≤ f (u) − f (x)} for all y ∈ X. Then T(y) is convex for all
y ∈ X and T(X) = {x ∈ X : εp(u, x) ≤ f (u) − f (x)}.

(c) In Theorem 4.3, X is a nonempty closed convex subset of a t.v.s., X need not be
a metric space. In Theorem 4.3, f and g are not assumed to have any convexity
property.

For the special case of Theorem 4.3, we have the following corollaries.

Corollary 4.3 Let X be a nonempty closed convex subset of a normed linear space E,
f : X → (−∞, ∞) be a l.s.c. function and q: X × X → (−∞, ∞) be a function, u ∈ X
and ε > 0. Let T: X � X be a multivalued map with nonempty convex values. Suppose
that

(1) T(X) ⊆ {y ∈ X : ε‖u − y‖ ≤ f (u) − f (y)} and T−(v) is open for each v ∈ X.
(2) for each x ∈ X, q(x, x) ≥ 0 and v → q(x, v) is quasi-convex;
(3) for each (x, v) ∈ X × X, ε‖x − v‖ − f (x) − f (v) < 0 implies q(x, v) < 0;
(4) there exist a nonempty compact subset K of X and a nonempty compact convex

subset M of X such that for each y ∈ X\K, there exists z ∈ M ∩ T(y) such that
ε‖y − z‖ < f (y) − f (z).

Then there exists x̄ ∈ X such that

(1) ε‖u − x̄‖ ≤ f (u) − f (x̄) and
(2) ε‖x̄ − v‖ ≥ f (x̄) − f (v) for all v ∈ T(x̄).

Proof Let p(x, y) = ‖x − y‖, then Corollary 4.3 follows from Theorem 4.3. �
Remark 4.3 In Corollary 4.3, X is not assumed to be complete.

Corollary 4.4 Let X be a nonempty closed convex subset of a t.v.s. E, f: X → (−∞, ∞)

be a l.s.c. convex function, u ∈ X and ε > 0. Let T: X � X be a multivalued map with
nonempty convex values, and p: X × X → (−∞, ∞) be a function. Suppose that

(1) T(X) ⊆ {y ∈ X : εp(u, y) ≤ f (u) − f (y)} and T−(v) is open for each v ∈ X;
(2) p(x, x) ≥ 0 for all x ∈ X;
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(3) for any x ∈ X, v → p(x, v) is convex and l.s.c.;
(4) for any v ∈ X, x → p(x, v) is u.s.c.; and
(5) there exist a nonempty compact subset K of X and a nonempty compact convex

subset M of X such that for each y ∈ X\K, there exists z ∈ M ∩ T(y) such that

εp(y, z) < f (y) − f (z).

Then there exists x̄ ∈ X such that

(1) εp(u, x̄) ≤ f (u) − f (x̄);
(2) εp(x̄, v) ≥ f (x̄) − f (v) for all v ∈ T(x̄).

Proof Let q: X × X → (−∞, ∞) be defined by q(x, v) = εp(x, v) − f (x) + f (v). Then
Corollary 4.4 follows from Theorem 4.3. �

The following Ekeland’s variational principle theorem follows immediately from
Corollary 4.4 and the argument as in ref. [20].

Theorem 4.4 [20] Let X be closed subset of a t.v.s., u ∈ X and ε > 0. Let f : X →
(−∞, ∞) be a l.s.c. convex function and p: X × X → (−∞, ∞) be a function. Suppose
that

(1) p(x, x) ≥ 0 for all x ∈ X and p(u, u) = 0
(2) p(x, z) ≤ p(x, y) + p(y, z) for any x, y, z ∈ X;
(3) for any x ∈ X, p(x, ·) is convex and l.s.c.;
(4) for any y ∈ X, p(·, y) is u.s.c.;
(5) there exist a nonempty compact subset K of X and a nonempty compact convex

subset M of X such that for each y ∈ X\K, there exists z ∈ M such that

εp(y, z) < f (y) − f (z) and εp(u, z) ≤ f (u) − f (z).

Then there exists x̄ ∈ X such that

(1) p(u, x̄) ≤ f (u) − f (x̄) and
(2) εp(x̄, v) ≥ f (x̄) − f (v) for all v ∈ X.

Proof Let W = {x ∈ X : εp(u, x) ≤ f (u) − f (x)}. Since x → εp(u, x) and x → f (x) are
l.s.c. convex functions, x → εp(u, x) + f (x) − f (u) is a l.s.c. convex function and W is
a closed convex subset of X. Let T : X � X be defined by T(y) = W for all y ∈ X.
Then

T−(z) =
{

X, if z ∈ W,
∅, if z ∈ X\W.

Then T−(z) is open for all z ∈ X and

T(X) = W = {x ∈ X : εp(u, x) ≤ f (u) − f (x)}.
Then by Theorem 4.3 that there exists x̄ ∈ X such that

(1) εp(u, x̄) ≤ f (u) − f (x̄) and
(2) εp(x̄, v) ≥ f (x̄) − f (v) for all v ∈ T(x̄) = W.

If v ∈ X\W, then

ε[p(u, x̄) + p(x̄, v)] ≥ εp(u, v) > f (u) − f (v)

≥ εp(u, x̄) + f (x̄) − f (v).
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Therefore εp(x̄, v) > f (x̄) − f (v) for all v ∈ X\W. Hence εp(x̄, v) ≥ f (x̄) − f (v) for all
v ∈ X. �

The following corollary follows from Theorem 4.4.

Corollary 4.5 Let X be a closed subset of a metrizable t.v.s. with topology induced by
a metric d. Let f: X → (−∞, ∞) be a l.s.c. convex function, u ∈ X and ε > 0. Suppose
that

(1) for any x ∈ X, v → d(x, v) is convex;
(2) there exist a nonempty compact subset K of X and a nonempty compact convex

subset M of X such that for each y ∈ X\K, there exists z ∈ M such that

εd(y, z) < f (y) − f (z) and εd(u, z) ≤ f (u) − f (z).

Then there exists x̄ ∈ X such that

(1) εd(u, x̄) ≤ f (u) − f (x̄) and
(2) εd(x̄, v) ≥ f (x̄) − f (v) for all v ∈ X.

Remark 4.4 In Corollary 4.5, (X, d) is not assumed to be complete, If X is compact,
then condition (2) in Corollary 4.5. can be deleted.

Apply Theorem 4.2 and follow the same argument as in Theorem 4.3, we obtain
another version of Ekeland’s variational principle.

Theorem 4.5 Let X be a nonempty convex subset of a locally convex space E, ε > 0
and u ∈ X, f : X → (−∞, ∞) be a l.s.c. convex function, p: X × X → (−∞, ∞) be a
function. Suppose that

(1) T : X � X is a compact continuous multivalued map with nonempty closed
convex values;

(2) v → p(u, v) is convex;
(3) for each x ∈ X, p(x, x) ≥ 0 and for each v ∈ X, x → p(x, v) is an u.s.c. concave

function.

Then there exists x̄ ∈ X such that x̄ ∈ T(x̄),

(1) εp(u, x̄) ≤ f (u) − f (x̄) and
(2) εp(x̄, v) ≥ f (x̄) − f (v) for all v ∈ T(x̄).

Remark 4.6

(a) If (X, ‖ · ‖) is a normed space and p: X × X → (−∞, ∞] be defined by p(x, v) =
‖v‖ − ‖x‖, then p satisfies conditions (2)–(4) of Corollary 4.4 and conditions (2)
and (3) of Theorem 4.5, but p is not a metric.

(b) The Ekeland’s variational principle in Theorems 4.4–4.6 requires certain convex-
ity assumptions on p and f , but in Theorem 4.3, we do not assume any convexity
assumption on p and f . In Corollary 4.3, we do not assume any convexity assump-
tion of f .

Remark 4.7 If we take p = f ≡ 0, then Theorem 4.5 will be reduced to Himmelberg
fixed point theorem. In fact, these two theorems are equivalent.

For the special case of Theorem 4.5, we establish a common solutions of fixed point
and optimization problem.
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Corollary 4.6 Let X be a nonempty convex subset of a locally convex space E, f: X →
(−∞, ∞) be a l.s.c, convex function , and u ∈ X. Suppose that

(1) T : X � X is a compact continuous multivalued map with nonempty closed
convex values.

Then there exists x̄ ∈ X such that x̄ ∈ T(x̄), f (x̄) ≤ f (u), f (v) ≥ f (x̄) for all v ∈ T(x̄).

Proof Let p(x, y) = 0 for all (x, y) ∈ X ×X. Then Corollary 4.6 follows from Theorem
4.5. �

As consequences of Theorems 3.3 and 3.6, we establish the following common fixed
point theorems.

Theorem 4.6 For each i ∈ I, let Yi be a nonempty closed convex subset of t.v.s. Vi for
each i ∈ I, let Fi: Y � Y, Gi: Y × Yi � Y be multivalued maps with nonempty values,

Hi = {yi ∈ Yi : y ∈ Fi(y) for y = (yi)i∈I ∈ Y}.
For each i ∈I, suppose that

(1) Ti(Y) ⊆ Hi and Fi : Y � Y is a closed multivalued map with nonempty values;
(2) for each vi ∈ Yi, T−

i (vi) is open and for each y = (yi)i∈I ∈ Y, Ti(y) is convex and
y ∈ Gi(y, yi);

(3) for each vi ∈ Yi, y � Gi(y, vi) is a closed, {0}-quasi-convex-like multivalued map;
and

(4) there exist a nonempty compact subset K of Y and a nonempty compact convex
subset Mi of Yi for each i ∈ I such that for each y ∈ Y\K, there exists j ∈ I and
vj ∈ Mj ∩ Tj(y) such that 0 /∈ −y + Gj(y, vj).

Then there exists ȳ ∈ Y such that ȳ ∈ Fi(ȳ), ȳ ∈ Gi(ȳ, vi) for all vi ∈ Ti(ȳ) and for all
i ∈ I.

Proof For each i ∈ I, let Pi(y) = {−y}, Li(y) = {−y}. Then Theorem 4.6 follows with
the same argument as in Theorem 3.3. �

Theorem 4.7 For each i ∈ I, let Yi be a nonempty convex subset of a locally convex
space Vi, Fi: Y � Y, Gi: X × Yi � Y be multivalued maps with nonempty values. For
each i ∈ I, suppose that

(1) Ti : Y � Yi is a compact continuous multivalued map with nonempty closed
convex values;

(2) y � Fi(y) is a concave multivalued map and {yi ∈ Yi : y ∈ Fi(y) for y = (yi)i∈I ∈
Y} �= ∅

(3) for each y = (yi)i∈I ∈ Y, vi � Gi(y, vi) is {0}-quasi-convex-like and y ∈ Gi(y, yi)

and for each vi ∈ Yi, y � Gi(y, vi) is a concave multivalued map;
(4) Gi : Y × Yi � Yi is closed.

Then there exists ȳ = (ȳi)i∈I ∈ Y such that ȳi ∈ Ti(ȳ), ȳ ∈ Fi(ȳ), ȳ ∈ Gi(ȳ, vi) for all
vi ∈ Ti(ȳ) and for all i ∈ I.
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Proof Let Pi(y) = {−y}, Li(y) = {−y}. Since y � Fi(y) is concave, it is easy to see
that

Ki = {yi ∈ Yi : 0 ∈ −y + Fi(y) for y = (yi)i∈I ∈ Y}
= {yi ∈ Yi : y ∈ Fi(y) for y = (yi)i∈I ∈ Y}

is a convex set. By (2), Ki �= ∅. It is easy to see that set

Hi(y) = {si ∈ Ti(y) : 0 ∈ −s + Gi(s, vi) for s = (si)i∈I ∈ Y and for all vi ∈ Ti(y)}
= {si ∈ Ti(y) : s ∈ Gi(s, vi) for s = (si)i∈I ∈ Y and for all vi ∈ Ti(y)}.

Since y � Gi(y, vi) is concave.

Hi(y) = ∩vi∈Ti(y){si ∈ Ti(y) : s ∈ Gi(s, vi) for s = (si)i∈I ∈ Y} is convex.

Since y � Gi(y, vi) is closed for each vi ∈ Yi and Ti is closed, it is easy to show
that Hi is closed. Then follow the same argument as in Theorem 3.5, we can prove
Theorem 4.7. �

As a consequence of Theorem 4.7, we obtain another common fixed point for two
families of multivlaued maps. This fixed point theorem contains Himmelberg fixed
point theorem as special case.

Corollary 4.7 For each i ∈ I, let Yi be a nonempty convex subset of a locally convex
space Vi, Fi: Y � Y, Ti: Y � Yi, be multivalued maps with nonempty values. For each
i ∈ I, suppose that

(1) Ti : Y � Yi is a compact u.s.c. multivalued map with nonempty closed convex
values;

(2) y � Fi(y) is a concave multivalued map and {yi ∈ Yi : y ∈ Fi(y) for y = (yi)i∈I ∈
Y} �= ∅.

Then there exists ȳ = (ȳi)i∈I ∈ Y such that ȳi ∈ Ti(ȳ), ȳ ∈ Fi(ȳ) for all i ∈ I.

Proof Let Gi(y, vi) = y for all (y, vi) ∈ Y × Yi. Then Corollary 4.7 follows from
Theorem 4.7. �
Remark 4.8 (1) If I is a singleton and we let F(y) = y for all y ∈ Y, then Corollary
4.7 will be reduced to Himmelberg fixed point theorem. As Theorem 3.5 follows from
Himmelberg fixed point theorem and Himmelberg fixed point theorem is a special
case of Theorem 3.5, we see that Theorem 3.5 and Himmelberg’s fixed point theorem
are equivalent.

5 Existence theorems of mathematical programs with variational inclusions
constraints and semi-infinite problems

In this section, we first study the following mathematical program with systems of
variational inclusions constraints.

Theorem 5.1 In Theorem 3.2, if we assume further that f : Y � Z0 is an u.s.c. multi-
valued map with nonempty compact values, where Z0 is a real t.v.s ordered by a proper
closed convex cone D. Then there exists a solution to the problem:
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(MPVI) MinDf (y) such that y ∈ Y.
0 ∈ Fi(y), 0 ∈ Gi(y, vi) for all vi ∈ Ti(y) and for all i ∈ I.

Proof Let Bi = {y ∈ Y : 0 ∈ Fi(y) and 0 ∈ Gi(y, vi) for all vi ∈ Ti(y)} and B = ∩i∈IBi.
By Theorem 3.2 that there exists ȳ ∈ Y such that for each i ∈ I, 0 ∈ Fi(ȳ), and
0 ∈ Gi(ȳ, vi) for all vi ∈ Ti(ȳ). Therefore ȳ ∈ B �= ∅. By condition (4) of Theorem 3.2
that ȳ ∈ K and B ⊆ K. Bi is closed for each i ∈ I. Indeed, if y ∈ Bi, then there exists
a net {yα}α∈� in Bi such that yα → y. One has yα → y and 0 ∈ Fi(yα), 0 ∈ Gi(yα , vi)

for all vi ∈ Ti(yα). Let vi ∈ Ti(y). By (ii), Ti is l.s.c. By Lemma 2.1 that there exists a
net {vα

i } such that vα
i ∈ Ti(yα) and vα

i → vi. Therefore 0 ∈ Gi(yα , vα
i ). By assumption,

y � Fi(y) and (y, vi) � Gi(y, vi) are closed. 0 ∈ Fi(y) and 0 ∈ Gi(y, vi). Since Y is
closed, y ∈ Y. Therefore y ∈ Bi and Bi is closed. Hence B = ∩i∈IBi is closed. But
B ⊆ K and K is compact. B is a compact set. Since f is an u.s.c. multivalued map with
compact values, it follows from Theorem 2.1 that f (B) is compact. Then Theorem 5.1
follows from Lemma 2.2. �
Remark 5.1 Theorem 5.1 is true if the condition that “f : Y � Z0 is an u.s.c. mul-
tivalued map with nonempty compact values” is replaced by “f : Y → R is a l.s.c.
function.”

Proof Let B be defined as in Theorem 5.1, we see in the Proof of Theorem 5.1 that B
is compact. Since f: Y → R is l.s.c., there exists a solution to (MPVI).

Theorem 4.1 can be used to prove an existence theorem of the following semi-infi-
nite problem.

(SI2) MinDf (y) subject to y ∈ Y such that for each i ∈ I, Fi(y) ≤ 0 and Gi(y, vi) ≥ 0
for all vi ∈ Ti(y).

Theorem 5.2 In Theorem 4.1, if we assume further that f : Y � Z0 is an u.s.c. multi-
valued map with nonempty compact values and Z0 and D are defined as in Theorem
5.1. Then there exists a solution to the problem (SI2).

Proof Let Bi = {y ∈ Y : Fi(y) ≤ 0 and Gi(y, vi) ≥ 0 for all vi ∈ Ti(y)} and B = ∩i∈IBi.
By Theorem 4.1, B �= ∅. By condition (4) of Theorem 4.1, B ⊆ K. For each i ∈ I, Bi is
closed. Indeed, if y ∈ B̄i, then there exists a net {yα}α∈� in Bi such that yα → y. One
has yα ∈ Y, Fi(yα) ≤ 0 and Gi(yα , vi) ≥ 0 for all vi ∈ Ti(yα). Let vi ∈ Ti(y). By (2), Ti
is l.s.c., there exists a net {vα

i }α∈� in Ti(yα) such that vα
i → vi. Hence Gi(yα , vα

i ) ≥ 0.
Since Fi is l.s.c., Gi is u.s.c. and Y is closed, y ∈ Y, Fi(y) ≤ 0 and Gi(y, vi) ≥ 0 for all
vi ∈ Ti(y). This shows that B is closed. Since B ⊆ K and K is compact. B is compact.
Follow the same argument as in Theorem 5.1, we can prove Theorem 5.2. �
Remark 5.2

(a) In Theorem 5.2, if we assume that f : Y → R is a l.s.c. function, then there exists
a solution to the problem:
min f (y) subject to y ∈ Y such that for each i ∈ I, Fi(y) ≤ 0 and Gi(y, vi) ≥ 0
for all vi ∈ Ti(y).

(b) In Theorem 5.2, if Hi: Y → Y∗ is a continuous function and ηi: Yi × Yi → Yi is
an affine continuous function such that ηi(yi, yi) ≥ 0 for all yi ∈ Yi. Let 〈·, ·〉 be
the dual pair between Yi and Y∗

i . Then it follows from Theorem 5.2 that there
exists a solution to the problem:
MinDf (y) subject to y = (yi)i∈I ∈ Y such that for each i ∈ I, Fi(y) ≤ 0,
〈Hi(y), ηi(yi, vi)〉 ≥ 0 for all vi ∈ Ti(y).
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Apply Theorem 4.2 and follow the same argument as in Theorem 5.2, we have the
following result.

Theorem 5.3 In Theorem 4.2, if we assume further that f : Y � Z0 is an u.s.c. multi-
valued map with nonempty compact values and Z0 and D are defined as in Theorem 5.1.
Then there exists a solution to the problem:

(MPFPEP) MinDf (y) subject to y = (yi)i∈I ∈ Y such that for each i ∈ I, yi ∈ Ti(y),
Fi(y) ≤ 0 and Gi(y, vi) ≥ 0 for all vi ∈ Ti(y).

If we apply Theorem 3.3 and follow the same argument as in Theorems 4.1 and 5.1,
we have the following result.

Theorem 5.4 In Theorem 4.1, if

Hi = {yi ∈ Yi : Fi(y) ≥ 0 for y = (yi)i∈I ∈ Y}
is replaced by

H′
i = {yi ∈ Yi : 0 ∈ Fi(y) for y = (yi)i∈I ∈ Y}

condition (1) is replaced by (1′) and assume further that f : Y � Z0 is an u.s.c.
multivalued map with nonempty compact values and Z0 and D are the same as in
Theorem 5.1, where

(1′) Ti(Y) ⊂ H′
i and Fi: Y → Y is a closed multivalued map.

Then there exists a solution to the problem:

(MPVIEP) MinDf (y) subject to y ∈ Y such that for each i ∈ I, 0 ∈ Fi(y) and
Gi(y, vi) ≥ 0 for all vi ∈ Ti(y).

Remark 5.4 In Theorem 5.4, if

H′
i = {yi ∈ Yi : 0 ∈ Fi(y) for y = (yi)i∈I ∈ Y}

is replaced by

H′′
i = {yi ∈ Yi : y ∈ Fi(y) for y = (yi)i∈I ∈ Y}.

Then there exists a solution to the problem:

(MPFPEP) MinDf (y) subject to y ∈ Y such that for each i ∈ I, y ∈ Fi(y) and
Gi(y, vi) ≥ 0 for all vi ∈ Ti(y).
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